The influence of gravity and light on locomotion and orientation of <i>Heterocypris incongruens</i> and <i>Notodromas monacha</i> (Crustacea, Ostracoda).
Author | |
---|---|
Abstract | :
For future manned long-d uration space missions, the supply of essentials, such as food, water, and oxygen with the least possible material resupply from Earth is vital. This need could be satisfied utilizing aquatic bioregenerative life support systems (BLSS), as they facilitate recycling and autochthonous production. However, few organisms can cope with the instable environmental conditions and organic pollution potentially prevailing in such BLSS. Ostracoda, however, occur in eu- and even hypertrophic waters, tolerate organic and chemical waste, varying temperatures, salinity, and pH ranges. Thus, according to their natural role, they can link oxygen liberating, autotrophic algae, and higher trophic levels (e.g., fish) probably also in such harsh BLSS. Yet, little is known about how microgravity (µg) affects Ostracoda. In this regard, we investigated locomotion and orientation, as they are involved in locating mating partners and suitable microhabitats, foraging, and escaping predators. Our study shows that Ostracoda exhibit altered activity patterns and locomotion behavior (looping) in µg. The alterations are differentially marked between the studied species (i.e., 2% looping in Notodromas monacha, ~50% in Heterocypris incongruens) and also the thresholds of gravity perception are distinct, although the reasons for these differences remain speculative. Furthermore, neither species acclimates to µg nor orientates by light in µg. However, Ostracoda are still promising candidates for BLSS due to the low looping rate of N. monacha and our findings that the so far analyzed vital functions and life-history parameters of H. incongruens remained similar as under normal gravity conditions despite of its high looping rate. |
Year of Publication | :
0
|
Journal | :
NPJ microgravity
|
Volume | :
4
|
Number of Pages | :
3
|
Date Published | :
2018
|
DOI | :
10.1038/s41526-017-0037-5
|
Short Title | :
NPJ Microgravity
|
Download citation |